Search results for "Gene expression data Clustering"

showing 1 items of 1 documents

GenClust: A genetic algorithm for clustering gene expression data

2005

Abstract Background Clustering is a key step in the analysis of gene expression data, and in fact, many classical clustering algorithms are used, or more innovative ones have been designed and validated for the task. Despite the widespread use of artificial intelligence techniques in bioinformatics and, more generally, data analysis, there are very few clustering algorithms based on the genetic paradigm, yet that paradigm has great potential in finding good heuristic solutions to a difficult optimization problem such as clustering. Results GenClust is a new genetic algorithm for clustering gene expression data. It has two key features: (a) a novel coding of the search space that is simple, …

Clustering high-dimensional dataDNA ComplementaryComputer scienceRand indexCorrelation clusteringOligonucleotidesEvolutionary algorithmlcsh:Computer applications to medicine. Medical informaticscomputer.software_genreBiochemistryPattern Recognition AutomatedBiclusteringOpen Reading FramesStructural BiologyCURE data clustering algorithmConsensus clusteringGenetic algorithmCluster AnalysisCluster analysislcsh:QH301-705.5Molecular BiologyGene expression data Clustering Evolutionary algorithmsOligonucleotide Array Sequence AnalysisModels StatisticalBrown clusteringHeuristicGene Expression ProfilingApplied MathematicsComputational BiologyComputer Science Applicationslcsh:Biology (General)Gene Expression RegulationMutationlcsh:R858-859.7Data miningSequence AlignmentcomputerSoftwareAlgorithmsBMC Bioinformatics
researchProduct